Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2231170, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37470409

RESUMO

This research study describes the development of new small molecules based on 2,4-thiazolidinedione (2,4-TZD) and their aldose reductase (AR) inhibitory activities. The synthesis of 17 new derivatives of 2,4-TZDs hybrids was feasible by incorporating two known bioactive scaffolds, benzothiazole heterocycle, and nitro phenacyl moiety. The most active hybrid (8b) was found to inhibit AR in a non-competitive manner (0.16 µM), as confirmed by kinetic studies and molecular docking simulations. Furthermore, the in vivo experiments demonstrated that compound 8b had a significant hypoglycaemic effect in mice with hyperglycaemia induced by streptozotocin. Fifty milligrams per kilogram dose of 8b produced a marked decrease in blood glucose concentration, and a lower dose of 5 mg/kg demonstrated a noticeable antihyperglycaemic effect. These outcomes suggested that compound 8b may be used as a promising therapeutic agent for the treatment of diabetic complications.


Assuntos
Aldeído Redutase , Hipoglicemiantes , Animais , Camundongos , Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipoglicemiantes/farmacologia , Cinética , Simulação de Acoplamento Molecular , Tiazolidinas/farmacologia
2.
Food Chem Toxicol ; 175: 113721, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907500

RESUMO

Berberine (Berb) is a major alkaloid with potential protective effects against multiple neurological disorders. Nevertheless, its positive effect against 3-nitropropionic acid (3NP) induced Huntington's disease (HD) modulation has not been fully elucidated. Accordingly, this study aimed to assess the possible action mechanisms of Berb against such neurotoxicity using an in vivo rats model pretreated with Berb (100 mg/kg, p.o.) alongisde 3NP (10 mg/kg, i.p.) at the latter 2 weeks to induce HD symptoms. Berb revealed its capacity to partially protect the striatum as mediated via the activation of BDNF-TrkB-PI3K/Akt signaling and amelioration of neuroinflammation status by blocking NF-κB p65 with a concomitant reduction in its downstream cytokines TNF-α and IL-1ß. Moreover, its antioxidant potential was evidenced from induction of Nrf2 and GSH levels concurrent with a reduction in MDA level. Furthermore, Berb anti-apoptotic effect was manifested through the induction of pro-survival protein (Bcl-2) and down-regulation of the apoptosis biomarker (caspase-3). Finally, Berb intake ascertained its striatum protective action by improving the motor and histopathological abnormalities with concomitant dopamine restoration. In conclusion, Berb appears to modulate 3NP-induced neurotoxicity by moderating BDNF-TrkB-PI3K/Akt signaling besides its anti-inflammatory, antioxidant, as well as anti-apoptotic effect.


Assuntos
Berberina , Fármacos Neuroprotetores , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Berberina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Antioxidantes , Fármacos Neuroprotetores/farmacologia
3.
Front Neuroanat ; 16: 1012422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36312298

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by gradual cognitive decline. Strong antioxidants that inhibit free radicals, such as polyphenols, reduce the likelihood of developing oxidative stress-related degenerative diseases such as AD. Naringin, a flavonoid found in citrus fruit shown to be neuroprotective, reduce oxidative damage and minimize histopathological changes caused by ischemic reperfusion, enhance the long-term memory in AD animal models. This work aimed to comprehend the role of naringin in the defense of the cerebellum against aluminum chloride (AlCl3)-induced AD in rats by investigating the behavioral, neurochemical, immunohistochemical, and molecular mechanisms that underpin its possible neuroprotective effects. Twenty-four adult albino rats were divided into four groups (n = 6/group): (i) Control (C) received saline per oral (p.o.), (ii) Naringin(N)-received naringin (100 mg/kg/d) p.o, (iii) AlCl3-recived AlCl3 (100 mg/kg/d) p.o and (iv) AlCl3 + Naringin (AlCl3 + N) received both AlCl3 and naringin p.o for 21 days. Behavioral tests showed an increase in the time to reach the platform in Morris water maze, indicating memory impairment in the AlCl3-treated group, but co-administration of naringin showed significant improvement. The Rotarod test demonstrated a decrease in muscle coordination in the AlCl3-treated group, while it was improved in the AlCl3 + N group. Neurochemical analysis of the hippocampus and cerebellum revealed that AlCl3 significantly increased lipid peroxidation and oxidative stress and decreased levels of reduced glutathione. Administration of naringin ameliorated these neurochemical changes via its antioxidant properties. Cerebellar immunohistochemical expression for microtubule assembly (tau protein) and oxidative stress (iNOS) increased in A1C13-treated group. On the other hand, the expression of the autophagic marker (LC3) in the cerebellum showed a marked decline in AlCl3-treated group. Western blot analysis confirmed the cerebellar immunohistochemical findings. Collectively, these findings suggested that naringin could contribute to the combat of oxidative and autophagic stress in the cerebellum of AlCl3-induced AD.

4.
Plants (Basel) ; 11(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079573

RESUMO

There is a huge demand for novel anticancer agents with fewer side effects compared to current therapies. Pitaya, or dragon fruit, is a reservoir of potent anticancer compounds. This research aimed to analyze the phytochemical components of Hylocereus undatus pulp and peel extracts using LC-MS and GC-MS, and to investigate the in vitro effects of both extracts against cancer (breast, MCF-7, and colon, Caco-2) and normal (lung; WI-38 and breast; MCF-10A) cell proliferation using the MTT assay. The apoptosis potential of the anticancer effects was also evaluated using flow cytometry, RT-PCR, and Western blot. The total phenolic and flavonoid contents in the peel extract were significantly higher than those in the pulp extract. Compared to the flavonoid and phenolic acid standards, the LC-MS analysis revealed the presence of nine compounds, which were represented as 84.32 and 5.29 µg/g of the flavonoids and 686.11 and 148.72 µg/g of the phenolic acids in the peel and pulp extracts, respectively. Among the identified compounds, chlorogenic acid, caffeic acid, ferulic acid, and rutin were found at the highest concentration in both plant extracts. Both extracts displayed cytotoxic activity against MCF-7 and Caco-2 cancer cells after 48 h of treatment at IC50 values ranging from 14 to 53 µg/mL with high selective indices against normal WI-38 and MCF-10A cell lines. The increase in apoptosis was revealed by the overexpression of p53, BAX, and caspase-9 and the downregulation of antiapoptotic Bcl-2 mRNA and protein expressions. The results indicate that H. undatus extracts can be a plant source for cancer therapy.

5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012706

RESUMO

Colorectal cancer therapies have produced promising clinical responses, but tumor cells rapidly develop resistance to these drugs. It has been previously shown that EC19 and EC23, two EC-synthetic retinoids, have single-agent preclinical anticancer activity in colorectal carcinoma. Here, isobologram analysis revealed that they have synergistic cytotoxicity with retinoic acid receptor (RAR) isoform-selective agonistic retinoids such as AC261066 (RARß2-selective agonist) and CD437 (RARγ-selective agonist) in Caco-2 cells. This synergism was confirmed by calculating the combination index (lower than 1) and the dose reduction index (higher than 1). Flow cytometry of combinatorial IC50 (the concentration causing 50% cell death) confirmed the cell cycle arrest at the SubG0-G1 phase with potentiated apoptotic and necrotic effects. The reported synergistic anticancer activity can be attributed to their ability to reduce the expression of ATP-binding cassette (ABC) transporters including P-glycoprotein (P-gp1), breast cancer resistance protein (BCRP) and multi-drug resistance-associated protein-1 (MRP1) and Heat Shock Protein 70 (Hsp70). This adds up to the apoptosis-promoting activity of EC19 and EC23, as shown by the increased Caspase-3/7 activities and DNA fragmentation leading to DNA double-strand breaks. This study sheds the light on the possible use of EC-synthetic retinoids in the rescue of multi-drug resistance in colorectal cancer using Caco-2 as a model and suggests new promising combinations between different synthetic retinoids. The current in vitro results pave the way for future studies on these compounds as possible cures for colorectal carcinoma.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/farmacologia , Apoptose , Células CACO-2 , Neoplasias Colorretais/tratamento farmacológico , Humanos , Proteínas de Neoplasias , Retinoides/farmacologia , Tretinoína/farmacologia
6.
Drug Des Devel Ther ; 16: 587-606, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281317

RESUMO

Background: Cancer is still a major world health threat, causing a high rate of mortality. VEGFR-2 inhibitor anticancer agents are of great significance. However, they showed some serious side effects. Purpose: To discover new effective and safer anticancer agents, a new series of piperazinylquinoxaline-based derivatives was designed and synthesized on the basis of the pharmacophoric features of VEGFR-2 inhibitor drugs. Methods: The new candidates were evaluated against A549 lung cancer cells, HepG-2 hepatoma cells, Caco-2 colon cancer cells, MDA breast cancer cells, and VEGFR-2 kinase. Moreover, cell cycle kinetics and apoptosis rates were studied in HepG-2 cells treated with compound 11, which was the most promising candidate. Results: The new derivatives revealed better antitumor results (IC50 from 6.48 to 38.58 µM) against the aforementioned cancer cell lines than sorafenib. Also, the new candidates showed VEGFR-2 inhibition with IC50 values ranging from 0.19 to 0.60 µM compared to 0.08 µM for sorafenib. Compound 11, meanwhile, showed IC50 values equal to 10.61, 9.52, 12.45, 11.52, and 0.19 µM against the cancer cell lines and VEGFR-2, respectively. Moreover, compound 11 raised the apoptosis rate in HepG-2 cells from 5% to 44% and caused 4, 2.3, and 3-fold increases in BAX/Bcl-2 ratio, caspase-3 level, and P53 expression, respectively, compared to control untreated cells. Finally, the new derivatives displayed the correct binding mode into VEGFR-2 kinase pocket, giving interactions with the essential residues. Conclusion: This work suggests that compound 11 is a very significant anticancer candidate, and piperazinylquinoxaline is an important scaffold in the development of new potential effective and safer VEGFR-2 inhibitor agents.


Assuntos
Antineoplásicos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Antineoplásicos/química , Apoptose , Células CACO-2 , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
7.
Biomed Pharmacother ; 145: 112122, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34489150

RESUMO

OBJECTIVE: Berberine (BBR) is a known alkaloid that has verified its protective effects against ischemia/reperfusion (I/RN) lesion in multiple organs but its poor oral bioavailability limited its use. Despite the previous works, its possible impact on the warm hepatic I/RN-induced lesion is not clear. Accordingly, a nanostructured lipid carrier of BBR (NLC BBR) was developed for enhancing its efficiency and to inspect its protective mechanistic against warm hepatic I/RN. METHODS: NLC BBR formula was evaluated pharmaceutically. Wistar rats were orally pre-treated with either BBR or NLC BBR (100 mg/kg) for 2 weeks followed by hepatic I/RN (30 min/24 h). Biochemical, ELISA, qPCR, western blot, histopathological, and immunohistochemical studies were performed. KEY FINDINGS: Optimized NLC BBR was prepared with a particle size of 130 ± 8.3 nm. NLC BBR divulged its aptitude to safeguard the hepatic tissues partly due to anti-inflammatory capacity through downsizing the HMGB1/TLR4/NF-κB trajectory with concomitant rebating of TNF-α, iNOS, COX-2, and MPO content. Furthermore, NLC BBR antiapoptotic trait was confirmed by boosting the prosurvival protein (Bcl-2) and cutting down the pro-apoptotic marker (Bax). Moreover, its antioxidant nature was confirmed by TAC uplifting besides MDA subsiding. On the other hand, NLC BBR action embroiled autophagy flux spiking merit exemplified in Beclin-1 and LC3-II enhancement. Finally, NLC BBR administration ascertained its hepatocyte guarding action by recovering the histopathological ailment and diminishing serum transaminases. CONCLUSION: NLC BBR purveyed reasonable shielding mechanisms and subsided incidents contemporaneous to warm hepatic I/RN lesion in part, by moderating HMGB1/TLR4/NF-κB inflammatory signaling, autophagy, and apoptosis.


Assuntos
Berberina/farmacologia , Hepatopatias/tratamento farmacológico , Nanoestruturas , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Berberina/administração & dosagem , Portadores de Fármacos/química , Proteína HMGB1/metabolismo , Lipídeos/química , Hepatopatias/patologia , Masculino , NF-kappa B/metabolismo , Tamanho da Partícula , Ratos , Ratos Wistar , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
8.
Biomed Pharmacother ; 138: 111539, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34311537

RESUMO

OBJECTIVE: Morin (MRN), a known natural flavonol, has demonstrated its shielding aptitude against ischemia/reperfusion (I/Re) lesion in various organs. Nonetheless, its potential influence on hepatic I/Re-induced injury modulation has not been fully elucidated. Consequently, the current study strived to investigate the mechanistic maneuvering of MRN against hepatic I/Re. Furthermore, the effects of MRN on Nrf2, TLR4, and NLRP3 proteins were evaluated via molecular docking studies. METHODS: For fulfilling this aim, Sprague-Dawley rats were allotted into 4 groups; Sham-operated (ShG), hepatic I/Re (30 min/24 h), and 10 days orally pre-treated MRN (50 and 100 mg/kg). KEY FINDINGS: MRN mechanistic maneuver disclosed its ability to safeguard the hepatocytes partially due to antioxidant aptitude through intensifying the expression/content of Nrf2/HO-1 trajectory accompanied by total antioxidant capacity boosting besides MDA lessening. In addition, MRN anti-inflammatory attribute was affirmed by downsizing the expression/content of TLR4/NF-κB trajectory accompanied by a sequent lessening of TNF-α, IL-1ß, IL-6, and ICAM-1 content. Moreover, MRN action entangled NLRP3 inhibitory character with subsequent MPO rebating. Furthermore, MRN anti-apoptotic trait verified by diminishing the pro-apoptotic and the executioner markers; Bax and caspase-3 levels, respectively. On the other hand, MRN administration proved its shielding action by improving the histopathological deterioration and lessening the serum ALT and AST levels. Finally, in silico studies exhibited moderate to promising binding affinities of MRN with the selected proteins ranging from -4.23 to -6.09 kcal mol-1. CONCLUSION: Higher and lower doses of MRN purveyed plausible defensive mechanisms and abated episodes concomitant with hepatic I/Re mischief in part, by modifying oxidative status and inflammation by the impact on Nrf2/HO-1, TLR4/ NF-κB, and NLRP3 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Fígado/metabolismo , Fígado/patologia , Hepatopatias/metabolismo , Hepatopatias/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ligação Proteica , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
9.
Molecules ; 26(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477997

RESUMO

(1) Background and Aim: All-trans retinoic acid (ATRA) induces differentiation and inhibits growth of many cancer cells. However, resistance develops rapidly prompting the urgent need for new synthetic and potent derivatives. EC19 and EC23 are two synthetic retinoids with potent stem cell neuro-differentiation activity. Here, these compounds were screened for their in vitro antiproliferative and cytotoxic activity using an array of different cancer cell lines. (2) Methods: MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, AV/PI (annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI)), cell cycle analysis, immunocytochemistry, gene expression analysis, Western blotting, measurement of glutamate and total antioxidant concentrations were recruited. (3) Results: HepG2, Caco-2, and MCF-7 were the most sensitive cell lines; HepG2 (ATRA; 36.2, EC19; 42.2 and EC23; 0.74 µM), Caco-2 (ATRA; 58.0, EC19; 10.8 and EC23; 14.7 µM) and MCF-7 (ATRA; 99.0, EC19; 9.4 and EC23; 5.56 µM). Caco-2 cells were selected for further biochemical investigations. Isobologram analysis revealed the combined synergistic effects with 5-fluorouracil with substantial reduction in IC50. All retinoids induced apoptosis but EC19 had higher potency, with significant cell cycle arrest at subG0-G1, -S and G2/M phases, than ATRA and EC23. Moreover, EC19 reduced cellular metastasis in a transwell invasion assay due to overexpression of E-cadherin, retinoic acid-induced 2 (RAI2) and Werner (WRN) genes. (4) Conclusion: The present study suggests that EC-synthetic retinoids, particularly EC19, can be effective, alone or in combinations, for potential anticancer activity to colorectal cancer. Further in vivo studies are recommended to pave the way for clinical applications.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Retinoides/síntese química , Retinoides/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Retinoides/química
10.
J Biochem Mol Toxicol ; 35(2): e22638, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33002289

RESUMO

Despite advances in treatment, breast cancer remains the widest spread disease among females with a high mortality rate. We investigated the potential effects of gallic acid (GA) as supportive therapy in the management of breast cancer. Anti-cancer activity with GA alone or in combination with paclitaxel and/or carboplatin was assessed by MTT assay and flow cytometry using annexin V/propidium iodide. The mechanism underlying the antiproliferative effects was investigated by measuring the expression of the pro-apoptotic marker (Bax), CASP-3, anti-apoptotic (Bcl-2), and, tumor suppressor (p53) by real-time polymerase chain reaction (RT-PCR) and western blot analysis. Cell cycle analysis was performed for the MCF-7 breast cancer cell line. GA, paclitaxel, and carboplatin alone or in combination arrested cell cycle progression at the G2/M phase and induced Pre-G1 apoptosis. RT-PCR showed that the triplet combination significantly raised P53, Bax, and CASP-3 mRNA expression (20.1 ± 1.41, 16.6 ± 0.43, and 20.04 ± 1.61, respectively) in MCF-7 cells when compared to single or combined treatment (p < .0001) while anti-apoptotic Bcl-2 mRNA levels were decreased in all treated groups compared to untreated cells. Western blot data of tested apoptotic factors were consistent with RT-PCR results. For the first time, we show that a minimum non-toxic concentration of GA increased the efficacy of paclitaxel- and carboplatin-induced MCF-7 apoptotic cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Carboplatina/farmacologia , Ácido Gálico/farmacologia , Paclitaxel/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Feminino , Humanos , Células MCF-7 , RNA Mensageiro/metabolismo
11.
Chem Biol Interact ; 330: 109245, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866465

RESUMO

The calcineurin inhibitor, cyclosporin A (CsA) is one of the most common immunosuppressive agents used in organ transplantation. However, its clinical use is often limited by several unwanted effects including nephrotoxicity and hepatotoxicity. By using immunohistochemical and ELISA techniques, it was found that CsA administration causes a rapid activation of a disintegrin and metalloproteases-17 (ADAM-17), epidermal growth factor receptor (EGFR) and subsequent ERK1/2 phosphorylation in the liver and kidney of albino mice. Furthermore, this study presents mechanistic relevance of this signaling cascade involving reactive oxygen species (ROS)-mediated ADAM-17/EGFR/ERK1/2 activation as indicated by a clear reduction in ADAM-17 and EGFR activities as well as ERK1/2 phosphorylation when the animals pretreated with Polyethylene glycol-superoxide dismutase (PEG-SOD) before CsA administration. Collectively, our findings demonstrate that CsA has the ability to activate ADAM-17-mediated EGFR/ERK1/2 phosphorylation in the liver and kidney of albino mice in ROS-dependent manner. Finally, these data may support the concept of using antioxidant therapy as a valuable approach for the prevention of CsA-induced nephrotoxicity and hepatotoxicity.


Assuntos
Ciclosporina/toxicidade , Rim/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Polietilenoglicóis/farmacologia , Superóxido Dismutase/farmacologia , Proteína ADAM17/metabolismo , Animais , Ciclosporina/farmacologia , Interações Medicamentosas , Receptores ErbB/metabolismo , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 393(5): 897-908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31907582

RESUMO

One of the most common causes of cancer mortality worldwide is hepatocellular carcinoma (HCC). Extracellular signal-regulated kinase (ERK1/2) pathway has been shown to play an important role in the development and progression of HCC. Here, we demonstrate that the immunosuppressive agent cyclosporin A (CsA) has the ability to increase the cellular growth in HCC (HepG2 cells) via activation of ERK1/2 signaling cascade. It was found that ERK1/2 phosphorylation induced by CsA was highly reduced in the presence of the reactive oxygen species (ROS) scavenger polyethylene glycol-superoxide dismutase (PEG-SOD). Furthermore, it was observed that inhibition of metalloproteinase activity using TAPI-2 prevents ERK1/2 activation by CsA. Moreover, a disintegrin and metalloproteinase domain 17 (ADAM-17) activity was found to be critical for ERK phosphorylation by CsA. In addition, CsA-induced ERK phosphorylation was highly reduced in the presence of either neutralizing anti-heparin-binding-epidermal growth factor (HB-EGF) antibody or UO126 (MEK inhibitor). By using the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478, it was found that EGFR is critical for ERK phosphorylation induced by CsA. Furthermore, CsA-induced cell proliferation was strongly reduced in the presence of either PEG-SOD or TAPI-2 or neutralizing anti-ADAM17 antibody or neutralizing anti-HB-EGF antibody or AG1478 or UO126. Collectively, these data demonstrate that CsA has the ability to activate ERK1/2 signaling cascade that could be translated into an increase in HepG2 cell proliferation. Furthermore, these data support the role of ROS, ADAM-17, and EGFR in ERK1/2 signaling activation and subsequent cell proliferation induced by CsA in HepG2 cells.


Assuntos
Carcinoma Hepatocelular/enzimologia , Proliferação de Células/efeitos dos fármacos , Ciclosporina/toxicidade , Imunossupressores/toxicidade , Neoplasias Hepáticas/enzimologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína ADAM17/metabolismo , Carcinoma Hepatocelular/patologia , Ativação Enzimática , Receptores ErbB/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
13.
Sci Rep ; 9(1): 1486, 2019 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-30728375

RESUMO

Organotypic brain culture is an experimental tool widely used in neuroscience studies. One major drawback of this technique is reduced neuronal survival across time, which is likely exacerbated by the loss of blood flow. We have designed a novel, tube flow system, which is easily incorporated into the commonly-used, standard semi-permeable membrane culture methodology which has significantly enhanced neuronal survival in a brain stem nucleus involved in control of motivated and arousal states: the laterodorsal tegmental nucleus (LDT). Our automated system provides nutrients and removes waste in a comparatively aseptic environment, while preserving temperature, and oxygen levels. Using immunohistochemistry and electrophysiology, our system was found superior to standard techniques in preserving tissue quality and survival of LDT cells for up to 2 weeks. In summary, we provide evidence for the first time that the LDT can be preserved in organotypic slice culture, and further, our technical improvements of adding a flow system, which likely enhanced perfusion to the slice, were associated with enhanced neuronal survival. Our perfusion system is expected to facilitate organotypic experiments focused on chronic stimulations and multielectrode recordings in the LDT, as well as enhance neuronal survival in slice cultures originating from other brain regions.


Assuntos
Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Tegmento Mesencefálico/crescimento & desenvolvimento , Animais , Nível de Alerta/fisiologia , Encéfalo , Meios de Cultura/química , Fenômenos Eletrofisiológicos/fisiologia , Camundongos , Neurônios , Organoides/crescimento & desenvolvimento
14.
Eur J Pharmacol ; 826: 106-113, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501870

RESUMO

In the present study, the functional properties of α7 nicotinic acetylcholine receptors (α7 nAChRs) and N-methyl-D-aspartate receptors (NMDARs) endogenously expressed in SH-SY5Y human neuroblastoma cells were characterized in an extracellular-signal regulated kinase (ERK) phosphorylation assay. Both choline and N-methyl-D-aspartate (NMDA) mediated robust concentration-dependent increases in ERK phosphorylation in the SH-SY5Y cells, exhibiting EC50 values in good agreement with those reported for the agonists at recombinant α7 nAChRs and NMDARs, respectively. Importantly, the responses evoked by choline (10 mM) and by NMDA (50 µM) were significantly inhibited by the α7-selective antagonist α-bungarotoxin (100 nM) and by the NMDAR-selective antagonist MK-801 (50 µM), respectively. The increased ERK phosphorylation levels observed upon co-application of choline (1, 3, 10 mM) and NMDA (50 µM) compared to those produced by the two agonists on their own were fully reconcilable with additive effects and did not reveal substantial synergy between α7 nAChR and NMDAR signaling. Interestingly, however, the responses evoked by the "choline (10 mM) - NMDA (50 µM)" combination were almost completely inhibited by α-bungarotoxin (100 nM) as well as by MK-801 (50 µM), suggesting some sort of a link between α7 nAChR- and NMDAR-mediated ERK phosphorylation. Finally, oligomeric amyloid-ß1-42 peptide (1000 nM) mediated robust inhibition of the ERK phosphorylation induced by choline (10 mM), NMDA (50 µM) and the "choline (10 mM) - NMDA (50 µM)" combination. In conclusion, ERK phosphorylation measurements in SH-SY5Y cells provides a robust assay for studies of α7 nAChR- and NMDAR-mediating signaling and putative functional interactions between the receptors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Peptídeos beta-Amiloides/farmacologia , Bungarotoxinas/farmacologia , Linhagem Celular Tumoral , Colina/farmacologia , Maleato de Dizocilpina/farmacologia , Humanos , N-Metilaspartato/farmacologia , Fragmentos de Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
15.
PLoS One ; 12(12): e0189513, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29261717

RESUMO

α7 nicotinic acetylcholine receptors (nAChRs) and N-methyl-D-aspartate receptors (NMDARs) are key mediators of central cholinergic and glutamatergic neurotransmission, respectively. In addition to numerous well-established functional interactions between α7 nAChRs and NMDARs, the two receptors have been proposed to form a multimeric complex, and in the present study we have investigated this putative α7 nAChR/NMDAR assembly in human and murine brain tissues. By α-bungarotoxin (BGT) affinity purification, α7 and NMDAR subunits were co-purified from human and murine cortical and hippocampal homogenates, substantiating the notion that the receptors are parts of a multimeric complex in the human and rodent brain. Interestingly, the ratios between GluN1 and α7 levels in BGT pull-downs from cortical homogenates from Alzheimer's disease (AD) brains were significantly lower than those in pull-downs from non-AD controls, indicating a reduced degree of α7 nAChR/NMDAR complex formation in the diseased tissue. A similar difference in GluN1/α7 ratios was observed between pull-downs from cortical homogenates from adult 3xTg-AD and age-matched wild type (WT) mice, whereas the GluN1/α7 ratios determined in pull-downs from young 3xTg-AD and age-matched WT mice did not differ significantly. The observation that pretreatment with oligomeric amyloid-ß1-42 reduced GluN1/α7 ratios in BGT pull-downs from human cortical homogenate in a concentration-dependent manner provided a plausible molecular mechanism for this observed reduction. In conclusion, while it will be important to further challenge the existence of the putative α7 nAChR/NMDAR complex in future studies applying other methodologies than biochemical assays and to investigate the functional implications of this complex for cholinergic and glutamatergic neurotransmission, this work supports the formation of the complex and presents new insights into its regulation in healthy and diseased brain tissue.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...